
Fermilab FERMILAB-Pub-01/082-A June 2001

Submitted to AJ

An EÆcient Algorithm for Positioning Tiles

in the Sloan Digital Sky Survey

Michael R. Blanton1, Robert H. Lupton2, F. Miller Maley3, Neal Young4, Idit Zehavi1, Jon Loveday5

ABSTRACT

The Sloan Digital Sky Survey (SDSS) will observe around 106 spectra from targets distributed

over an area of about 10,000 square degrees, using a multi-object �ber spectrograph which can

simultaneously observe 640 objects in a circular �eld-of-view (referred to as a \tile") 1.49Æ in

radius. No two �bers can be placed closer than 5500 during the same observation; multiple targets

closer than this distance are said to \collide." We present here a method of allocating �bers

to desired targets given a set of tile centers which includes the e�ects of collisions and which is

nearly optimally eÆcient and uniform. Because of large-scale structure in the galaxy distribution

(which form the bulk of the SDSS targets), a na��ve covering the sky with equally-spaced tiles

does not yield uniform sampling. Thus, we present a heuristic for perturbing the centers of the

tiles from the equally-spaced distribution which provides more uniform completeness. For the

SDSS sample, we can attain a sampling rate of > 92% for all targets, and > 99% for the set of

targets which do not collide with each other, with an eÆciency > 90% (de�ned as the fraction of

available �bers assigned to targets).

1. Introduction

The Sloan Digital Sky Survey (SDSS; York et al. 2000) is producing a deep imaging survey over about

10,000 square degrees, using a camera with a large format CCD array on a dedicated telescope at Apache

Point Observatory in New Mexico (Gunn et al. 1998). A sample of objects selected from this imaging survey

is being targeted for a spectroscopic follow-up survey which is being conducted concurrently. About 900,000

of these spectroscopic targets will be galaxies (Strauss et al. 2001), about 100,000 will be QSOs (Richards et

al. 2001), and about 100,000 will be selected by color to be intrinsically very red, luminous galaxies known

as \Luminous Red Galaxies" (Eisenstein et al. 2001). In this paper, we will refer to all of these objects

generically as \tiled targets," or often simply \targets."

These targets are observed using two multi-object �ber spectrographs on the same telescope (Uomoto

et al. 2001). Each spectroscopic �ber plug plate, referred to as a \tile," has a circular �eld-of-view with

a radius of 1.49Æ and can accommodate 640 �bers, 48 of which are reserved for observations of blank sky

1 Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510

2 Princeton University Observatory, Princeton, NJ 08544

3 Department of Computer Science, Princeton University, Princeton, NJ 08544

4 Department of Computer Science, Dartmouth College, 6211 Sudiko� Laboratory, Hanover, NH 03755-3510

5 Sussex Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QJ, UK

{ 2 {

and spectrophotometric standards. Because of the �nite size of the �ber plugs, the minimium separation of

�ber centers is 5500. If, for example, two objects are within 5500 of each other, both of them can be observed

only if they lie in the overlap between two adjacent tiles. Simulations and early observations both suggest

that 10% of targets in the SDSS will be unobservable if they do not lie in overlaps of tiles; about 30% of the

sky will be covered by such overlaps. The goal of the SDSS is to observe 99% of the maximal set of targets

which has no such collisions (about 90% of all targets). In Section 4 we give a more complete description of

the details of the SDSS.

Around 2,000 tiles will be necessary to provide �bers for all the targets in the survey. Since each tile

which must be observed contributes to the cost of the survey (due both to the cost of production of the plate

and to the cost of observing time), we desire to minimize the number of tiles necessary to observe all the

desired targets. In order to maximize eÆciency (de�ned as the fraction of available �bers assigned to tiled

targets) when placing these tiles and assigning targets to each tile, we need to address two problems. First,

we must be able to determine, given a set of tile centers, how to optimally assign targets to each tile | that

is, how to maximize the number of targets which have �bers assigned to them. This problem is non-trivial

because the circular tiles overlap. Second, we must determine the most eÆcient placement of the tile centers,

which is non-trivial because the distribution of targets on the sky is non-uniform, due to the well-known

clustering of galaxies on the sky. It turns out that the �rst problem can be solved in polynomial time, even

in the presence of �ber collisions (as long as targets are distributed across the sky in a reasonable way). The

second problem belongs to a class of problems for which only exponentially expensive methods for �nding

the exact solution are known (that is, it is \NP -complete"), but we use a heuristic method developed by

Lupton, Maley, & Young (1998) to �nd an approximate solution.

This paper discusses the strategy used by the SDSS to place its tiles using these methods. It is designed

to run on a patch of sky consisting of a set of rectangles in a spherical coordinate system, known in SDSS

parlance as a \chunk." Much of the strategy was described by Lupton, Maley, & Young (1998); this

paper provides more astronomical context and describes the method for resolving �ber collisions. Section 2

describes the method. Section 3 shows example results from actual SDSS data and from simulations. Section

4 describes some technical aspects of the SDSS. Section 5 summarizes our results.

2. Tile Placement and Fiber Allocation

Here we describe our method for placing each tile and allocating the �bers of each tile to the targets.

First, we discuss the allocation of �bers given a set of tile centers. In the absence of �ber collisions, this

problem can be solved quickly and optimally, as shown in Section 2.1. A method which is nearly optimal in

the presence of �ber collisions is presented in Section 2.2. Second, in Section 2.3, we discuss how to eÆciently

place the centers of the tiles.

2.1. Target-to-Tile Assignment without Collisions

Given a distribution of targets on the sky and an a priori set of tile centers, one can �nd the optimal

solution to the problem of allocating the targets to each tile, such that the maximum possible number of

targets are assigned �bers. With circular tiles, which necessarily overlap, this is a somewhat non-trivial

problem.

{ 3 {

Figure 1 shows at the top a very simple example of a distribution of targets and the positions of two tiles

we want to use to observe these targets. Given that for each tile there is a �nite number of available �bers,

how do we decide which targets get allocated to which tile? As realized by Lupton, Maley, & Young (1998),

this problem is equivalent to a network ow problem, which computer scientists have been kind enough to

solve for us already (e.g., Goldberg 1997).

The basic idea is shown in the bottom half of Figure 1, which shows the appropriate network for the

situation in the top half. Using this �gure as reference, we here de�ne some terms which are standard in

combinatorial literature and which will be useful here:

� node: The nodes are the solid dots in the �gure; they provide either sources/sinks of objects for the

ow or simply serve as junctions for the ow. For example, in this context each target and each tile

corresponds to a node.

� arc: The arcs are the lines connecting the nodes. They show the paths along which objects can ow

from node to node. In Figure 1, it is understood that the ow along the arc proceeds to the right.

For example, the arcs traveling from target nodes to tile nodes express which tiles each target may be

assigned to.

� capacity: The minimum and maximum capacity of each arc is the minimum and maximum number

of objects that can ow along it. For example, because each tile can accommodate only 592 �bers, the

capacities of the arcs traveling from the tile nodes to the sink node is 592.

� cost: The cost per object along each arc is exacted for allowing objects to ow down a particular arc;

the total cost is the summed cost of all the arcs. In this paper, the network is designed such that the

minimum total cost solution is the desired solution.

Imagine that you have a ow of 7 objects which enters the network at the source node at the left. The goal

is for the entire ow to leave the network at the sink node at the right for the lowest possible cost. The

objects must travel along the arcs, from node to node. Each arc has a maximum capacity of objects which

it can transport, as labeled. (One can also specify a minimum number, which will be useful later). Each arc

also has an associated cost, which is exacted per object which is allowed to ow across that arc. Arcs link

the source node to a set of nodes corresponding to the set of targets. Each target node is linked by an arc

to the node of each tile it is covered by. Each tile node is linked to the sink node by an arc whose capacity

is equal to the number of �bers available on that tile. None of these arcs has any associated cost. Finally,

an \overow" arc links the source node directly to the sink node, for targets which cannot be assigned to

tiles. The overow arc has e�ectively in�nite capacity; however, a cost is assigned to objects owing on the

overow arc, guaranteeing that the algorithm fails to assign targets to tiles only when it absolutely has to.

This network thus expresses all the possible �ber allocations as well as the constraints on the numbers of

�bers in each tile. Finding the minimum cost solution (which can be done in polynomial time using the

method of Goldberg 1997) then maximizes the number of targets which are actually assigned to tiles.

However, there are a couple of properties of the network ow solutions which must be treated with

caution. First, notice that in this example there are only three types of target nodes: those only in tile 1,

those only in tile 2, and those in both.6 When the network ow algorithm we use here chooses its solution, it

6The astute reader will notice that there is therefore a more (computationally) eÆcient way of setting up the network than

shown in Figure 1, and indeed Lupton, Maley, & Young (1998) describe doing so. We implement the more costly method in

this situation because it is simpler and we can a�ord it computationally.

{ 4 {

does not guarantee that it chooses targets within each of these types randomly. Thus, if the order of the target

nodes as sent to the network ow algorithm are correlated with any target property (for example, position

on the sky), the distribution of that property in targets assigned to tiles will di�er from the distribution

in all of the targets. Take for example the situation that the targets are sorted by right ascension. If the

algorithm is unable to assign �bers to some of the targets, it is likely that the unassigned targets will be

nodes that are close to each other in Figure 1. Therefore, they will also be clumped in right ascension. This

is unacceptable if we desire a reasonable window function. Thus, we randomize the order in which nodes are

assigned to targets by this algorithm; this prevents any correlation between target properties and whether a

target gets a �ber.

Second, the particular method we use, provided by Goldberg (1997), has the interesting property that

when a certain number of targets cannot be allocated �bers, the algorithm preferentially chooses to exclude

targets which are covered by more than one tile. This property has no e�ect on the overall eÆciency of

the solution, but because the method for �tting for tile positions presented in Section 2.3 will tend to put

overlaps of tiles in preferentially overdense regions, it may introduce subtle correlations between the sampling

rate and the density �eld. This behavior is important if the level of completeness in low is parts of the tiling

region; however, the uniformity of our completeness is high enough that this e�ect is not important.

2.2. Target-to-Tile Assignment with Collisions

As described above, there is a limit of 5500 to how close two �bers can be on the same tile. If there were

no overlaps between tiles, these collisions would make it impossible to observe � 10% of the SDSS targets.

Because the tiles are circular, some fraction of the sky will be covered with overlaps of tiles, allowing some

of these targets to be recovered. In the presence of these collisions, the best assignment of targets to the

tiles must account for the presence of collisions, and strive to resolve as many as possible of these collisions

which are in overlaps of tiles. We approach this problem in two steps, for reasons described below. First,

we apply the network ow algorithm of Section 2.1 to the set of \decollided" targets | the largest possible

subset of the targets which do not collide with each other. Second, we use the remaining �bers and a second

network ow solution to optimally resolve collisions in overlap regions.

2.2.1. Network Flow for Decollided Objects

The e�ect of �ber collisions is one which any analysis of the SDSS data is going to face. The fact that

most (70%) of the sky in the survey will be only covered by a single tile means that a certain number of

objects will be missed for this reason. Thus, the best that one can hope for in terms of sampling is that all

unobserved targets have a close neighbor which was observed; the redshift of the observed target would thus

give us some prior information on the redshift of the unobserved target. Furthermore, exactly where and

how many targets one can recover in tile overlaps depends strongly on the locations of the tiles, and thus

on the target density �eld. To evaluate the e�ect of this dependence on large-scale structure statistics, one

would have to run the algorithm described here on a large number of mock catalogs. For these two reasons,

we must take care that we identify a set of targets which we could observe no matter where the tiles are,

and obtain as complete a sample as possible of these targets.

To identify this sample, we de�ne the maximal subset of the targets which are all greater than 5500 from

each other, which we refer to as the \decollided" set. To clarify what we mean by this maximal set, consider

{ 5 {

Figure 2. Each circle represents a target; the circle diameter is 5500, meaning that overlapping circles are

targets which collide. The set of solid circles is the \decollided" set. Thus, in the triple collision at the top,

it is best to keep the outside two rather than the middle one. To �nd this decollided set of targets, we run

a friends-of-friends grouping algorithm on the targets with a 5500 linking length. The resulting groups are

almost always of suÆciently low multiplicity that we can simply check all possibilities to �nd the best possible

selection of targets which eliminates �ber collisions. We pick at random one of the set of equivalent \best"

selections; for example, if two objects collide, this algorithm simply picks one at random to be \decollided."

This determination is complicated slightly by the fact that some targets are assigned higher priority

than others. For example, as explained in Section 4.1, QSOs are given higher priority than galaxies by

the SDSS target selection algorithms. What we mean here by \priority" is that a higher priority target is

guaranteed never to be eliminated from the sample due to a collision with a lower priority object. Thus, our

true criterion for determining whether one set of assignments of �bers to targets in a group is more favorable

than another is that a greater number of the highest priority objects are assigned �bers. In the case of a tie

in the highest priority objects, the next highest priority objects are considered, and so on.

Once we have identi�ed our set of decollided objects, we use the network ow solution to �nd the best

possible assignment of �bers to that set of objects.

2.2.2. Network Flow for Collisions

After allocating �bers to the set of decollided targets, there will usually be unallocated �bers, which

we want to use to resolve �ber collisions in the overlaps. We can again express the problem of how best to

perform the collision resolution as a network, although the problem is a bit more complicated in this case.

In the case of binaries and triples, we design a network ow problem such that the network ow solution

chooses the tile assignments optimally. In the case of higher multiplicity groups, our simple method for

binaries and triples does not work and we instead resolve the �ber collisions in a random fashion; however,

fewer than 1% of targets are in such groups, and the di�erence between the optimal choice of assignments

and the random choices made for these groups is only a small fraction of that.

The design of the second network ow is similar to the �rst, with source and sink nodes (connected by

the overow arc) and a layer of tile nodes. However, instead of a layer of target nodes, we have a layer of

nodes corresponding to each group (as de�ned by the aforementioned friends-of-friends algorithm) which has

at least one member in an overlap of tiles. We thus ignore groups covered only by one tile, since we have

already done as well as possible for those targets. Note we include single-member groups in this process,

which allows targets in overlaps which were previously guaranteed a �ber on one plate to be shu�ed to

another plate, if it proves desirable to do so.

First, we need to set the properties of each arc connecting the source node to each group node. For

each group, we �nd the maximum number of targets which could be observed, cmax, taking advantage of the

overlapping tiles, but regardless of the number of available �bers in each tile. We �nd cmax by simply trying

all possible target-to-tile con�gurations for that group, and picking the best solution (again accounting for

the relative priorities of the objects). A constraint on the best solution is that some subset of the targets

in each group will have been allocated �bers as decollided targets in the �rst network ow. Any \best"

solution must guarantee that these targets will be assigned �bers again in the second network ow. In

addition, these required targets clearly set a minimum number of targets to observe in each group, cmin.

Each source-to-group arc will have its maximum and minimum capacity set according to these bounds.

{ 6 {

Second, we need to set the properties of each arc connecting a group node to a tile node. In the case

that cmax � 3, we determine the maximum number of targets which can be assigned to each tile, cmax;i,

given all the equivalent \best" sets of target-to-tile assignments. The minima cmin;i are set to the minimum

number of arcs in each tile, given all legal target-to-tile assignments. The group-to-tile arcs are then assigned

these maximum and minimum capacities. Under these conditions, in almost every case, any solution the

network ow �nds will be achievable, in the sense that it can be implemented without the occurrence of �ber

collisions. See below for a discussion of the exceptions.

In the case that cmax > 3, the same prescription does not provide the assurance that the network

ow will return a viable set of tile assignments, and instead we pick a particular \best" set of target-to-tile

assignments for each such group in order to guarantee feasibility. In this case, the code chooses at random a

particular realization of the \best" resolution of the �ber collisions, (one must also be careful, in the cmax > 3

case, to guarantee �bers to all of the decollided �bers which were picked in the �rst network ow solution;

this task is complicated but tractable).

For the sake of concreteness, consider Figure 3, which shows a possible tile-target con�guration and

the networks which would be constructed to solve it. Again, the solid circles indicate the \decollided" set

of targets, which has 11 members, and for which the decollided network ow is run (unmarked arcs have

a capacity of unity). Assuming all the decollided targets are obtained, we set up the network ow for the

groups in the overlap as shown at the bottom. Each source-to-group arc is marked by its maximum capacity

cmax followed by its minimum capacity cmin in parentheses. As explained above, these minima are set by

the fact that some of the targets are guaranteed spots because they were previously assigned tiles in the

decollided solution. The group-to-tile capacities are set to the maximum possible on any given tile. Again,

setting things up this way allows the network ow solution to optimally allocate the overlap �bers (at least

for triples and binaries) while still guaranteeing that a solution is possible and that �bers are assigned to all

the decollided targets which had been previously selected.

As mentioned above, there are cases for which these rules return unfeasible answers. Under the conditions

of the SDSS, these cases are extraordinarily rare; we mention them because the same may not be true for

every application. There are essentially two classes of failures. First, occasionally it happens that because

part of a group is in an overlap and part is not, the \best" solution requires that more �bers be assigned

to a tile than were assigned in the decollided solution. If, in conjunction with this occurrence, the tile in

question is in a particularly dense region, it may already require all its �bers to cover the decollided targets.

Thus, applying the rules above creates a second network ow with no possible solution. In such cases, the

code reverts to a \fail-safe" mode which only allows solutions to the group-to-tile problem which put the

same number of decollided targets onto each tile as were assigned in the �rst network ow.

Second, and again very rarely, it occasionally happens that while the second network ow successfully

returns a choice of �ber assignments, this choice makes it impossible to assign �bers to all the decollided

targets which were guaranteed �bers in the �rst network ow, not because of a lack of �bers but because

of geometrical considerations. Again, the problem is associated with groups which straddle tile boundaries.

In this case, the problem occurs when some targets in a group are in an overlap of three or more tiles,

and others to be in an overlap of a lesser number of tiles. In the code, we simply warn the user that some

decollided targets have been lost. On the basis of simulations, we expect ten to twenty of the million SDSS

targets to be lost due to this e�ect.

{ 7 {

2.3. Tile Placement

Once one understands how to assign �bers given a set of tile centers, one can address the problem of how

best to place those tile centers. One can show that to solve this problem optimally is NP -hard (e.g. Megiddo

& Supowit 1984), but Lupton, Maley, & Young (1998) have developed a heuristic method which works

well for the sorts of distributions of targets we deal with here. This method �rst distributes tiles uniformly

across the sky and then uses a cost-minimization scheme to perturb the tiles to a more eÆcient solution.

2.3.1. Initial Conditions

We need to choose some initial, nearly uniform covering of the region to be tiled, before perturbing it

to improve the eÆciency. We use two techniques. First, for suÆciently large chunks of sky, we draw the

uniform tiling from an approximately uniform covering of the sphere provided by Hardin, Sloane & Smith

(2001). These coverings are provided for discrete numbers of tiles; the choice appropriate for the SDSS target

density (about 120 per square degree) is 7682 tiles over the whole sky. We throw away tiles whose centers

are not in the chunk of sky of interest to us. Second, for smaller chunks of sky (which a small chunk of the

uniform spherical covering is less likely to cover in a reasonable way) we simply lay down a rectangle of tiles,

with the centers of the tiles in each row o�set in order to provide a complete covering.

2.3.2. Perturbing the Tiles

The method is essentially iterative. One starts with a uniform covering of tiles over the region in

question, as described in the previous subsection. Then, one allocates targets to the tiles, but instead of

limiting a target to the tiles within a tile radius, one allows a target to be assigned to further tiles, but with

a certain cost which increases with distance (remember that the network ow accommodates the assignment

of costs to arcs). For group-to-tile nodes in the second network ow solution, one de�nes the cost according

the position of the group center. One uses exactly the same �ber allocation procedure as above.

In practice, we do not allow �bers to be assigned to any tile, but only those within 2:5 times the tile

radius. We assign a cost of the following form:

c =
0 r < Rtile

A
h�

r
Rtile

��
� 1

i
r > Rtile

; (1)

where r is the distance of the �ber from the center of the tile, Rtile is the radius of the tile, and � is the

logarithmic slope of the cost function. A is a scale factor, set so that at r = 2:5Rtile the cost is equal to the

cost of not assigning the �ber at all.

What this does is to give each tile some information about the distribution of targets outside of it. Then,

once one has assigned a set of targets to each tile, one changes each tile position to that which minimizes the

cost of its set of targets. To perform this minimization, we use Powell's direction set method, as described

by Press et al. (1992). Then, with the new positons, one reruns the �ber allocation, perturbs the tiles

again, and so on. As Lupton, Maley, & Young (1998) point out, this method is guaranteed to converge to

a minimum (though not necessarily a global minimum), because the total cost must decrease at each step.

The parameter � sets the slope of the cost function; the most advantageous value of � depends in

detail on the density and distribution of the targets. We generally set 0:5 < � < 2. High values in this

{ 8 {

range encourage tiles to take large excursions from their initial positions, since the slope of the cost function

becomes higher at larger radii. Under these conditions, tiles are inuenced by distant targets that they may

never cover; however, this behavior can be desirable for large chunks of sky for which the best solution may

require large numbers of tiles to shift in unison. Low values in this range are more conservative in the sense

that tiles are encouraged to travel less far from their initial positions, since the slope of the cost function

decreases with radius. This behavior is usually desirable for small chunks of sky, for which many tiles are

sitting near an edge and large changes of position will usually uncover sky. Perhaps a more general approach

is to allow � to be variable in some way throughout the minimization.

Depending on the overall survey goals, one can choose to which set of targets these costs apply. For the

SDSS, we are most interested in maximizing the fraction of decollided targets which are observed. For this

reason, we assign cost only to the decollided targets, e�ectively ignoring the other objects when �tting for

tile positions. In fact, during the iteration we do not even perform the second network ow.

It is possible to assign �bers to a slightly larger fraction (by about 1%) of all targets if all targets are

included in the cost minimization. However, for the SDSS this improvement would come at the cost of large

numbers of gaps opening up between tiles, because the number of tiles necessary to observe all the targets is

uncomfortably close to the number of tiles necessary to simply cover the available sky. This e�ect highlights

an important facet of the tiling problem: ineÆciency arises because tiles which are in underdense regions

cannot always be moved towards dense regions without leaving parts of the sky completely uncovered. A

much higher target (and thus tile) density would mitigate this diÆculty.

In practice, we also need to determine the appropriate number of tiles to use. Thus, using a standard

binary search, we repeatedly run the cost-minimization to �nd the minimum number of tiles necessary to

satisfy the SDSS requirements, namely that we assign �bers to > 99% of the decollided targets.

3. Testing the Method

In order to test how well this algorithm works, we apply it both to simulated and real data. First, we

test the algorithm on a large solid angle sample drawn from an N -body simulation. Second, we show results

based on actual tiling solutions for a small chunk of sky in the SDSS commissioning data.

3.1. Simulation Tests

For this exercise, we use the simulations of Cole et al. (1998), which are collisionlessN -body simulations

of the growth of structure in a COBE-normalized Cold Dark Matter (CDM) model with
m = 0:3,
� = 0:7,

and �8 = 1:05. In this simulation, dark matter particles are chosen randomly to represent galaxies, and are

assigned luminosities based on an assumed luminosity function. The location of an observer is chosen, a ux

limit is assumed, and the galaxies in the simulation are \observed." The resulting distribution of galaxies has

about the same redshift distribution as do galaxies in the actual SDSS survey, with a median z � 0:1. This

procedure results in a surface density (about 90 per square degree) and an angular clustering of galaxies on

the sky approximately the same as the SDSS. In order to simulate the quasar and LRG samples, we distribute

an extra 20 targets per square degree randomly on the sky; although in three dimensions both populations are

highly clustered, their large distance and sparse sampling make the approximation that they are randomly

distributed in angle not bad for our purposes. We extract a section of the simulation about 3075 square

{ 9 {

degrees in solid angle (a rectangle in spherical coordinates spanning the latitude range �30Æ < � < 35Æ and

the longitude range �30Æ < � < 20Æ) and consisting of 336,392 objects. The distribution of galaxies in this

range is given in Figure 4. This angular region is probably larger than any that will be available during the

course of the SDSS.

As initial conditions for this large \chunk," we extract a portion of a nearly uniform covering of the

sphere given by Hardin, Sloane & Smith (2001). We exclude any tiles whose centers are outside the oÆcial

boundaries of the chunk. This procedure will leave missing targets near the edges; these targets can be

recovered when the adjacent region of sky is tiled. In any case, any gaps which are left when the survey is

completed can be accounted for in the window function, to the extent that those gaps are uncorrelated with

the underlying density of galaxies. For our �rst test, we do not perturb the positions of the tiles at all, and

assign the �bers to the uniformly distributed tiles. The results are shown in Figure 5; here we show the tiles

as circles and the missing decollided galaxies as squares. Decollided galaxies which were assigned �bers and

all collided galaxies are omitted from the plot. The statistics associated with this solution are given in the

�rst column of Table 1. It is clear that although the overall completeness is high (� 98:3% of decollided

objects are assigned) the small amount of incompleteness is concentrated in a few, dense regions of sky.

The patch of incompleteness near the bottom center is about 85{90% complete in the decollided objects on

average; the most incomplete sections of that are only 10|30% complete. Clearly it is unsatisfactory to

have such a high rate of incompleteness concentrated in unusually dense regions of sky, even if the overall

completeness of the survey is high. Such a strong correlation of the sampling fraction with the galaxy density

�eld poses diÆculty estimating large-scale structure statistics.

Let us therefore perturb the tiles in an e�ort to increase the completeness and its uniformity. The result

of applying the method described in Section 2.3 is shown in Figure 6; the resulting tiling statistics are given

in the second column of Table 1. (Note that one extra tile was added in the process; this has a negligible

e�ect on the statistics in Table 1). Now there are only a handful of objects missing in the interior of the

sample. All of the missing objects are concentrated at the edges. Thus, while the overall completeness is

increased a bit (to � 99:0% of decollided objects), the real improvement is in the uniformity of the sample.

To show how the resolution of collisions works, we show as points in Figure 7 the collided galaxies

(those which are not in the decollided set). We have zoomed into a section of the interior to make it easier

to distinguish the points. These points represent the set of objects which would be eliminated due to �ber

collisions if there was no overlap between tiles. Open squares are placed over those which did not receive

�bers. It is clear that in the underdense regions most of the collisions in overlaps of tiles are actually resolved.

In the overdense regions, however, almost all of the �bers are used to observe decollided targets, and few are

left over to resolve collisions.

Overall, in these simulations, � 92:5% of the available targets were assigned �bers; most of the missing

ones are due to �ber collisions which were not able to be resolved. The eÆciency of the tiling solution,

quanti�ed as the percentage of �bers which are used on tiled objects, is � 91:2%.

3.2. Tests with SDSS Data

We here show tiling results using this method from SDSS commissioning data. In this phase of the

survey, there was not enough imaging data yet to de�ne a chunk as large as in the simulations of the

previous subsection, so we had to settle for a much smaller chunk of sky. This chunk (known as \Chunk 7")

of sky is 5 degrees wide and about 12 degrees long, and contains 6629 objects. It is the �rst chunk of SDSS

{ 10 {

data on which this version of the code was used.

The initial conditions were set up simply as a rectangular distribution of tiles. The tile positions were

perturbed in order to maximize the number of decollided galaxies assigned to �bers. However, in this case

the tiles move very little | the uniform initial conditions turn out to be close to a minimum in our cost

function. The statistics of the solution are listed again in Table 1; note that the eÆciency is a bit low, mainly

because this chunk is small. The positions of the targets and tiles are given in Figure 8.

An obvious criticism of the tiling of this chunk is that we should only tile the center of the chunk, such

that our tiles never cover sky which has not yet been imaged. Then we would wait until later to observe

edges of the chunk. In terms of the total number of tiles drilled, such an approach would be more eÆcient.

However, doing this would leave the telescope idle when it could be taking spectra, so it is worth drilling

a few more tiles than necessary in order to optimally use the available time. In any case, the �bers left

unassigned to any main survey targets are assigned to other targets, mainly stars, FIRST (Becker, White, &

Helfand 1995) sources, and ROSAT (Voges et al. 1999) sources, so the unassigned �bers are by no means

wasted.

4. Technical Details for SDSS Data

There are a few technical details which may be useful to mention in the context of SDSS data, since

understanding these issues is crucial to understanding the window function when calculating large-scale

structure statistics with the survey. First, we will describe which targets within the SDSS are \tiled" in

the manner described here, and how such targets are prioritized. Second, we will discuss the method used

by SDSS to deal with the fact that the imaging and spectroscopy are performed within the same �ve-year

time period. Third, we will describe the tiling outputs which the SDSS tracks as the survey progresses.

Throughout, we refer to the code which implements the algorithm described above as tiling.

The information described in this section (along with the spectroscopic results) is necessary but not quite

suÆcient to calculate large-scale structure statistics for the survey. First, at later stages in the processing,

�bers can be lost due to collisions with guide �bers, as well as with the center of the tile, where a post

prevents any �ber from being placed within 10000 (in later versions, we will adjust the algorithm described

here to attempt to avoid placing tile centers so close to targets). Second, some �elds within each chunk are

excluded for reasons such as bad seeing. Finally, bright stars make it impossible to observe galaxies in a

certain fraction of the sky, in a way which varies with Galactic latitude. These masks need to be determined

to study clustering on the largest scales in the survey.

4.1. Targets Which are \Tiled"

Only some of the spectroscopic target types identi�ed by the target selection algorithms in the SDSS

are \tiled." These types (and their designations in the primary and secondary target bitmasks, as described

in Stoughton et al. 2001) are listed in Table 2. They consist of most types of QSOs, main sample galaxies,

LRGs, hot standard stars, and brown dwarfs. These are the types of targets for which tiling is run and for

which we are attempting to create a well-de�ned sample. Once the code has guaranteed �bers to all possible

\tiled targets," remaining �bers are assigned to other target types by a separate code.

All of these target types are treated equivalently, except that they assigned di�erent \priorities," desig-

{ 11 {

nated by an integer. As described above, the tiling code uses them to help decide �ber collisions. The sense

is that a higher priority object will never lose a �ber in favor of a lower priority object. The priorities are

assigned in a somewhat complicated way for reasons immaterial to tiling, but the essense is the following:

the highest priority objects are brown dwarfs and hot standards, next come QSOs, and the lowest priority

objects are galaxies and LRGs. QSOs have higher priority than galaxies because galaxies are higher density

and have stronger angular clustering. Thus, allowing galaxies to bump QSOs would allow variations in

galaxy density to imprint themselves into variations in the density of QSOs assigned to �bers, which we

would like to avoid. For similar reasons, brown dwarfs and hot standard stars (which have extremely low

densities on the sky) are given highest priority.

Each tile, as stated above, is 1.49Æ degrees in radius, and has the capacity to handle 592 tiled targets.

No two such targets may be closer than 5500 on the same tile.

4.2. De�nition of a Tiling Chunk

The modus operandi of the SDSS makes it impossible to tile the entire 10,000 square degrees simulta-

neously, because we want to be able to take spectroscopy during non-pristine nights, based on the imaging

which has been performed up to that point. In practice, periodically a \chunk" of data is processed, cali-

brated, has targets selected, and is passed to the tiling code. During the �rst year of the SDSS, about one

chunk per month has been created; as more and more imaging is taken and more tiles are created, we hope

to decrease the frequency with which we need to make chunks, and to increase their size.

The �rst chunk which is \supported" by the SDSS is denoted Chunk 4. The �rst chunk for which the

version of tiling described here was run is Chunk 7. Chunks earlier than Chunk 7 used a di�erent (less

eÆcient) method of handling �ber collisions. The earlier version also had a bug which arti�cially created

gaps in the distribution of the �bers. The locations of the known gaps are given in Stoughton et al. (2001)

for Chunk 4, since it is part of the SDSS Early Data Release.

A chunk is de�ned as a set of rectangles on the sky (de�ned in survey coordinates; Stoughton et al.

2001) on the sky. All of these rectangle are designed to cover only sky which has been imaged and processed.

Most of each chunk consists of targets which have not been included in any previous chunk. However, if an

earlier chunk was adjacent, targets may have been missed near its edges because they were not covered by

tiles, so the areas near the edges of adjacent chunks are also included. Thus, in general, chunks overlap.

4.3. Tiling Outputs

Once a chunk is tiled, the position of each tile is stored. The tiles are assigned a global index for

the survey known as a tileId. For each target, the tileId to which it is assigned is stored (or �1 if

no �ber is assigned). In addition, the 5500 group to which it belonged (indexed from 0 for each chunk

independently) is also stored as collisionGroup. Finally, a mask parameter is created, whose three lowest

bits are (respectively): ASSIGNED, DECOLLIDED, and COVERED. ASSIGNED means that a �ber was actually

assigned to the target. DECOLLIDED means that the target was designated a decollided target. COVERED

means that the target was in an area observable by some tile. Unfortunately, these parameters are not

included in the SDSS Early Data Release.

{ 12 {

5. Summary

This paper describes a method for positioning tiles and assigning �bers to targets which is being used for

the SDSS. The method assigns �bers in a near-optimal manner, which is possible to do in polynomial time

given the sorts of target distributions found in the SDSS. We note that if the typical nearest-neighbor distance

of targets is of order the �ber collision length, the groups found in the friends-of-friends algorithm become

very large, and the solution is only possible in exponential time. The positioning of tiles is an NP -complete

problem (Megiddo & Supowit 1984); we use the heuristic devised by Lupton, Maley, & Young (1998) to

�nd an approximate solution. Importantly, we de�ne a set of decollided targets for which we can achieve

nearly complete sampling; this fact will make the survey easier to mimic when analyzing simulations. We

have tested this method both on simulations and on SDSS commissioning data. Finally, we have described

some of the technical details of the SDSS itself.

Variations of this method may be useful for future surveys consisting of overlapping spectroscopic �elds

of view. The main lesson learned in developing this method is that ineÆciencies arise primarily due to the

need to completely cover the given area. To take the most perverse possible case, if 592 objects were spread

across the entire sky, 592 tiles would be necessary. One would rather have those 592 targets within the area

of a single tile, which could assign �bers to all of them. Thus, to minimize the number of tiles drilled, one

needs a high enough target density that the number of tiles necessary to observe the targets easily covers the

survey area. This allows the tiles more freedom to move to where they are most needed without uncovering

areas of sky in underdense regions; it also provides more overlaps, and thus more ability to resolve �ber

collisions. Since the resulting tiling would be nearly 100% eÆcient even for small chunks, there would be

no loss of eÆciency due to the piecemeal nature of the chunks. Because of its scienti�c goals, spectroscopic

instrumentation, and its budget, the SDSS is not in this optimal regime. A large increase in target density

(factor of two) would be desirable from the point of view solely of tiling eÆciency; however, the survey goals

and technical considerations make such a change impossible. Naturally, we feel that the loss of eÆciency is

not devastating, because the unused �bers are used to observe other interesting targets, but we mention it

here as an issue that future surveys may wish to consider.

We would like to thank Daniel Eisenstein, Gillian Knapp, Don Schneider, Ravi Sheth, Michael Strauss,

and Daniel van den Berk for advice and comments. MB is supported by the DOE and NASA grant NAG

5-7092 at Fermilab, and is grateful for the hospitality of the Department of Physics and Astronomy at the

State University of New York at Stony Brook, who kindly provided computing facilities on his frequent visits

there.

The Sloan Digital Sky Survey (SDSS) is a joint project of The University of Chicago, Fermilab, the

Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Max-

Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico

State University, Princeton University, the United States Naval Observatory, and the University of Wash-

ington. Apache Point Observatory, site of the SDSS telescopes, is operated by the Astrophysical Research

Consortium (ARC).

Funding for the project has been provided by the Alfred P. Sloan Foundation, the SDSS member

institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U.S.

Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS Web site is

http://www.sdss.org/.

{ 13 {

REFERENCES

Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559

Cole, S., Hatton, S., Weinberg, D. H., & Frenk, C. S. 1998, MNRAS, 300, 945

Eisenstein, D. J., et al. 2001, in preparation

Goldberg, A. V. 1997, J. Algorithms, 22, 1

Gunn, J. E., Carr, M. A., Rockosi, C. M., Sekiguchi, M., et al. 1998, AJ, 116, 3040

Hardin, R. H., Sloane, N. J. A., & Smith, W. D. 2001, published electronically at

http://www.research.att.com/~njas/icosahedral.codes/

Lupton, R. H., Maley, F. M., & Young, N. 1998, J. Algorithms, 27, 339

Megiddo, N. & Supowit, K. J. 1984, SIAM J. Comput., 13, 182

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes (Cambridge:

Cambridge Univ. Press)

Richards, G., et al. 2001, in preparation

Stoughton, C., et al. 2001, in preparation

Strauss, M. A., et al. 2001, in preparation

Uomoto, A., et al. 2001, in preparation

Voges, W., Aschenbach, B., Boller, Th., et al. 1999, A&A, 349, 389

York, D., et al. 2000, AJ, 120, 1579

This preprint was prepared with the AAS LATEX macros v5.0.

{ 14 {

Table 1. Tiling Results

Simulation (Uniform) Simulation (Perturbed) SDSS Chunk 7 (Perturbed)

Nplates 575 576 12

ftiled
a 0.918 0.924 0.933

fdec
b 0.919 0.919 0.902

ftiled;dec
c 0.983 0.990 0.999

foverlap
d 0.593 0.607 0.837

EÆciencye 0.907 0.912 0.870

aFraction of targets which received �bers

bFraction of targets classi�ed as decollided

cFraction of decollided targets which received �bers

dFraction of collided targets in overlaps of tiles which received �bers

eFraction of �bers assigned to targets

Table 2. Target Selection Flags For Tiled Targets

Name Hex Bit Description

Primary Targets

TARGET QSO HIZ 0x1 High-redshift QSO

TARGET QSO CAP 0x2 QSO at high Galactic latitude

TARGET QSO SKIRT 0x4 QSO at low Galactic latitude

TARGET QSO FIRST CAP 0x8 \Stellar" FIRST source at high Galactic latitude

TARGET QSO FIRST SKIRT 0x10 \Stellar" FIRST source at low Galactic latitude

TARGET GALAXY RED 0x20 LRG

TARGET GALAXY 0x40 Main sample galaxy

TARGET GALAXY BIG 0x80 Low surface brightness galaxy

TARGET GALAXY BRIGHT CORE 0x100 Low surface brightness galaxy with bright �ber magnitude

TARGET STAR BROWN DWARF 0x8000 Brown dwarf

Secondary Targets

TARGET HOT STD 0x200 Hot subdwarf standard star

{ 15 {

Tile 1 Tile 2

Source

Targets

Tiles

Sink

Direction of Flow

592

592

Overflow Arc (cost = 1000)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 1.| Top half shows a schematic distribution of targets (black dots) and the placement of two tiles

used to observe these targets. Bottom half shows the network ow which would be constructed to optimally

assign the targets to each tile. Each black dot is a \node;" in analogy to the top half, the �lled dots represent

targets and un�lled dots represent tiles. Each line is an \arc." The arcs are each labeled by a number which

represents their \capacity." Unless otherwise marked, there is no cost associated with allowing targets to

ow down an arc. One should imagine that each target in the top panel contributes to the ux of some

uid owing from the source at left. In this analogy, each arc is like a pipe which can accommodate some

maximum ow, and the nodes are locations where these pipes join, and where the ow can be redirected.

We want to direct the ow of all the targets to the sink at right for the lowest possible cost. Since the

direct route (the \overow arc") from the source to the sink, which does not ow through any tile nodes and

thus corresponds to not observing a galaxy, has a substantial cost, the minimum cost requirement e�ectively

means maximizing the number of targets which are assigned to tiles.

{ 16 {

Fig. 2.| Dramatization of the de�nition of the \decollided" set of galaxies. Each circle (both solid and

dashed) is centered on the location of a target and has a diameter equal to the �ber collision limit. Thus,

intersecting circles represent targets which \collide." The solid circles represent the largest subset of galaxies

which can be chosen which do not \collide" with each other. We refer to these galaxies as a \decollided" set

of galaxies. Note that there is usually no unique decollided set, because (for example) in a binary collision

we are always free to choose either galaxy to be decollided.

{ 17 {

Tile 1 Tile 2

Source

Targets

Tiles

Sink
592

592

Overflow Arc (cost = 1000)

Groups
Tiles

SinkSource

2 (1)

3 (2)

2

2

1

1

1 (1) 1

1

588

589

Overflow Arc (cost = 1000)

Decollided Network Flow

Collision Network Flow

Fig. 3.| Top panel shows a schematic distribution of targets and tiles, as in Figure 1; in the manner of

Figure 2, the decollided galaxies are solid circles and the others are dashed circles. Middle panel shows the

decollided network ow (Section 2.2.1) used to �nd the optimal solution for decollided objects; this network

ow has the same form as that in Figure 1 (here unmarked arcs have a capacity of unity). Bottom panel

shows the network ow used to resolve collisions in overlaps of tiles. In this case, the set of target nodes

has been replaced by nodes corresponding to each group with one or more members in an overlap of tiles.

For the case shown here, there are three such groups. The arcs to and from each group have minimum and

maximum capacities set as described in the text. If omitted, the maximum capacity is unity. The minimum

capacity for each arc is put in parentheses after the maximum; if omitted, the minimum capacity is zero.

{ 18 {

Fig. 4.| Distribution of targets on the sky, using galaxies drawn from a simulation by Cole et al. (1998),

plus 20 targets per square degree added randomly to represent LRG and QSO targets. We have subsampled

the targets by a factor of �ve for this plot.

{ 19 {

Fig. 5.| Results of distributing tiles uniformly across the targeted region. The boundaries of the tiles are

shown. Missing decollided galaxies are shown as squares. While overall the completeness is high, note that

in the densest regions, many decollided objects are missing, with the completeness becoming as low as 10%

in the most incomplete regions.

{ 20 {

Fig. 6.| Same as Figure 5, now with the results of perturbing the positions of the tiles using the cost

minimization heuristic described in Section 2.3.2. While the tiles move very little from their uniform initial

distribution, the completeness has improved and has become far more uniform. Only a few objects are

missing in the interior of the sample. This improvement occurs because in the densest regions tiles are

pushed together, and thus overlap more.

{ 21 {

Fig. 7.| Here we have zoomed in on a section of Figure 6. In this �gure the points are the collided object

(i.e. those objects that are not in the decollided set). Open squares are placed over those collided objects

which do not receive �bers; that is, they show objects in �ber collisions which did not get resolved. Obviously

all objects bumped by collisions are missed in regions covered by a single tile. When extra �bers are available,

as happens near the top of the �gure, almost all of the �ber collisions in the overlaps of tiles are resolved.

Of course, when all the �bers are used on decollided objects in the �rst network ow, as happens near the

bottom of the �gure, none are left to resolve collisions in overlaps.

{ 22 {

Fig. 8.| The distribution of targets in Chunk 7 of the SDSS, displayed in \survey coordinates." The

positions of the tiles are shown as well (they are nearly in the uniform positions in which they were placed

initially). The open squares show the �ve decollided objects which were not assigned �bers.

